

Linearity rules of integration

Introduction

To enable us to find integrals of a wider range of functions than those normally given in a Table of Integrals we can make use of two rules known as linearity rules.

1. The integral of a constant multiple of a function

A constant factor in an integral can be moved outside the integral sign in the following way.

$$
\int k f(x) \mathrm{d} x=k \int f(x) \mathrm{d} x
$$

This is only possible when k is a constant, and it multiplies some function of x.

Example

Find $\int 11 x^{2} \mathrm{~d} x$.

Solution

We are integrating a multiple of x^{2}. The constant factor, 11 , can be moved outside the integral sign.

$$
\int 11 x^{2} \mathrm{~d} x=11 \int x^{2} \mathrm{~d} x=11\left(\frac{x^{3}}{3}+c\right)=\frac{11 x^{3}}{3}+11 c
$$

where c is the constant of integration. Because $11 c$ is a constant we would normally write the answer in the form $\frac{11 x^{3}}{3}+K$ where K is another constant.

Example

Find $\int-5 \cos x \mathrm{~d} x$.

Solution

We are integrating a multiple of $\cos x$. The constant factor, -5 , can be moved outside the integral sign.

$$
\int-5 \cos x \mathrm{~d} x=-5 \int \cos x \mathrm{~d} x=-5(\sin x+c)=-5 \sin x+K
$$

where K is a constant.

2. The integral of the sum or difference of two functions

When we wish to integrate the sum or difference of two functions, we integrate each term separately as follows:

$$
\begin{aligned}
& \int f(x)+g(x) \mathrm{d} x=\int f(x) \mathrm{d} x+\int g(x) \mathrm{d} x \\
& \int f(x)-g(x) \mathrm{d} x=\int f(x) \mathrm{d} x-\int g(x) \mathrm{d} x
\end{aligned}
$$

Example

Find $\int\left(x^{3}+\sin x\right) \mathrm{d} x$.

Solution

$$
\int\left(x^{3}+\sin x\right) \mathrm{d} x=\int x^{3} \mathrm{~d} x+\int \sin x \mathrm{~d} x=\frac{x^{4}}{4}-\cos x+c
$$

Note that only a single constant of integration is needed.

Example

Find $\int \mathrm{e}^{3 x}-x^{7} \mathrm{~d} x$.

Solution

$$
\int \mathrm{e}^{3 x}-x^{7} \mathrm{~d} x=\int \mathrm{e}^{3 x} \mathrm{~d} x-\int x^{7} \mathrm{~d} x=\frac{\mathrm{e}^{3 x}}{3}-\frac{x^{8}}{8}+c
$$

Exercises

1. a) Find $\int 8 x^{5}+3 x^{2} \mathrm{~d} x$,
b) $\int \frac{2}{3} x \mathrm{~d} x$.
2. Find $\int 3 \cos x+7 x^{3} \mathrm{~d} x$.
3. Find $\int 7 x^{-2} \mathrm{~d} x$.
4. Find $\int \frac{5}{x} \mathrm{~d} x$.
5. Find $\int \frac{x+\cos 2 x}{3} \mathrm{~d} x$.
6. Find $\int 5 \mathrm{e}^{4 x} \mathrm{~d} x$.
7. Find $\int \frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2} \mathrm{~d} x$.

Answers

1. a) $\frac{4 x^{6}}{3}+x^{3}+c$,
b) $\frac{1}{3} x^{2}+c$,
2. $3 \sin x+\frac{7 x^{4}}{4}+c$,
3. $-\frac{7}{x}+c$
4. $5 \log _{\mathrm{e}}|x|+c$,
5. $\frac{x^{2}}{6}+\frac{\sin 2 x}{6}+c$,
6. $\frac{5 \mathrm{e}^{4 x}}{4}+c$,
7. $\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}+c$.
